Logarithmic Co-Higgs Bundles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co - Higgs bundles on P 1

Co-Higgs bundles are Higgs bundles in the sense of Simpson, but with Higgs fields that take values in the tangent bundle instead of the cotangent bundle. Given a vector bundle on P, we find necessary and sufficient conditions on its Grothendieck splitting for it to admit a stable Higgs field. We characterize the rank-2, odd-degree moduli space as a universal elliptic curve with a globally-defin...

متن کامل

Co - Higgs bundles on P 1 Steven Rayan

Co-Higgs bundles are Higgs bundles in the sense of Simpson, but with Higgs fields that take values in the tangent bundle instead of the cotangent bundle. Given a vector bundle on P, we find necessary and sufficient conditions on its Grothendieck splitting for it to admit a stable Higgs field. We characterize the rank-2, odd-degree moduli space as a universal elliptic curve with a globally-defin...

متن کامل

Logarithmic Jet Bundles

Recently J. P. Demailly gave a natural desingularization of the quotient of jet bundles by the full reparametrization group. Using this, he was able to complete an approach by Green and Griiths to construct negatively curved jet pseudometrics on subvarieties of Abelian varieties to prove Bloch's theorem metrically. In the present paper we extend this technique to the logarithmic case, yielding ...

متن کامل

Moduli of Higgs Bundles

2 Local symplectic, complex and Kähler geometry: a quick review 10 2.1 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Symplectic quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Complex manifolds . . . . . . . . . . . . . . ....

متن کامل

Introduction to Higgs Bundles

H(X,C) = H(X)⊕H(X) = H(X,OX)⊕H(X,ΩX). Therefore, homomorphisms π1(X) → C are the same as an element of H(X,OX), i.e. a holomorphic line bundle of degree 0, and an element of H(X,ΩX), i.e. a holomorphic 1-form. In these notes, we describe an analogous correspondence for the case of represenations into a nonabelian Lie Group G, focusing in particular on the case G = GL(n,C) [5]. Theorems are give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2019

ISSN: 1660-5446,1660-5454

DOI: 10.1007/s00009-018-1293-7